Implicit Dynamics in the Material-Point Method
نویسنده
چکیده
A time-implicit discretization is derived and validated for the material-point method (MPM). The resulting non-linear, discrete equations are solved using Newton’s method combined with either the conjugate gradient method or the generalized minimum residual method. These Newton-Krylov solvers are implemented in a matrix-free fashion for numerical efficiency. A description of the algorithms and evaluation of their performance is presented. On all test problems, if the time step is chosen appropriately, the implicit solution technique is more efficient than an explicit method without loss of desired features in the solutions. In a dramatic example, time steps 10,000 times the explicit step size are possible for the large deformation compression of a cylindrical billet at 1.2% the computational cost.
منابع مشابه
Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملEfficiency of Anti-Hourglassing Approaches in Finite Element Method (TECHNICAL NOTE)
one of the simplest numerical integration method which provides a large saving in computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four different an...
متن کاملImplicit time integration for the material point method: Quantitative and algorithmic comparisons with the nite element method
An implicit integration strategy was developed and implemented for use with the material point method (MPM). An incremental-iterative solution strategy was developed around Newton’s method to solve the equations of motion with Newmark integration to update the kinematic variables. Test problems directly compared the implicit MPM solutions with those obtained using an explicit MPM code and impli...
متن کاملAn implicit time integration strategy for use with the material point method
An implicit integration strategy for use with the Material Point Method (MPM) is described. This strategy uses an incremental–iterative solution strategy based on a Newton method to solve the equations of motion and Newmark integration to update the kinematic variables. An example problem was used to compare the implicit integration scheme to the traditional explicit integration scheme used wit...
متن کاملConvergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings
The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.
متن کامل